skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Achenie, Luke_E_K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract As a subfield of artificial intelligence (AI), machine learning (ML) has emerged as a versatile tool in accelerating catalytic materials discovery because of its ability to find complex patterns in high‐dimensional data. While the intricacy of cutting‐edge ML models, such as deep learning, makes them powerful, it also renders decision‐making processes challenging to explain. Recent advances in explainable AI technologies, which aim to make the inner workings of ML models understandable to humans, have considerably increased our capacity to gain insights from data. In this study, taking the oxygen reduction reaction (ORR) on {111}‐oriented Pt monolayer core–shell catalysts as an example, we show how the recently developed theory‐infused neural network (TinNet) algorithm enables a rapid search for optimal site motifs with the chemisorption energy of hydroxyl (OH) as a single descriptor, revealing the underlying physical factors that govern the variations in site reactivity. By exploring a broad design space of Pt monolayer core–shell alloys ( candidates) that were generated from thermodynamically stable bulk structures in existing material databases, we identified novel alloy systems along with previously known catalysts in the goldilocks zone of reactivity properties. SHAP (SHapley Additive exPlanations) analysis reveals the important role of adsorbate resonance energies that originate from ‐band interactions in chemical bonding at metal surfaces. Extracting physical insights into surface reactivity with explainable AI opens up new design pathways for optimizing catalytic performance beyond active sites. 
    more » « less